Link sign prediction by Variational Bayesian Probabilistic Matrix Factorization with Student-t Prior

نویسندگان

  • Yisen Wang
  • Fangbing Liu
  • Shu-Tao Xia
  • Jia Wu
چکیده

In signed social networks, link sign prediction refers to using the observed link signs to infer the signs of the remaining links, which is important for mining and analyzing the evolution of social networks. The widely used matrix factorization-based approach – Bayesian Probabilistic Matrix Factorization (BMF), assumes that the noise between the real and predicted entry is Gaussian noise, and the prior of latent features is multivariate Gaussian distribution. However, Gaussian noise model is sensitive to outliers and is not robust. Gaussian prior model neglects the differences between latent features, that is, it does not distinguish between important and non-important features. Thus, Gaussian assumption based models perform poorly on real-world (sparse) datasets. To address these issues, a novel Variational Bayesian Probabilistic Matrix Factorization with Student-t prior model (TBMF) is proposed in this paper. A univariate Student-t distribution is used to fit the prediction noise, and a multivariate Student-t distribution is adopted for the prior of latent features. Due to the high kurtosis of Student-t distribution, TBMF can select informative latent features automatically, characterize long-tail cases and obtain reasonable representations on many real-world datasets. Experimental results show that TBMF improves the prediction performance significantly compared with the state-of-the-art algorithms, especially when the observed links are few. © 2017 Elsevier Inc. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variational Inference For Probabilistic Latent Tensor Factorization with KL Divergence

Probabilistic Latent Tensor Factorization (PLTF) is a recently proposed probabilistic framework for modelling multi-way data. Not only the common tensor factorization models but also any arbitrary tensor factorization structure can be realized by the PLTF framework. This paper presents full Bayesian inference via variational Bayes that facilitates more powerful modelling and allows more sophist...

متن کامل

A Bayesian Tensor Factorization Model via Variational Inference for Link Prediction

Probabilistic approaches for tensor factorization aim to extract meaningful structure from incomplete data by postulating low rank constraints. Recently, variational Bayesian (VB) inference techniques have successfully been applied to large scale models. This paper presents full Bayesian inference via VB on both single and coupled tensor factorization models. Our method can be run even for very...

متن کامل

Nonparametric Max-Margin Matrix Factorization for Collaborative Prediction

We present a probabilistic formulation of max-margin matrix factorization and build accordingly a nonparametric Bayesian model which automatically resolves the unknown number of latent factors. Our work demonstrates a successful example that integrates Bayesian nonparametrics and max-margin learning, which are conventionally two separate paradigms and enjoy complementary advantages. We develop ...

متن کامل

Analysis of Variational Bayesian Matrix Factorization

Recently, the variational Bayesian approximation was applied to probabilistic matrix factorization and shown to perform very well in experiments. However, its good performance was not completely understood beyond its experimental success. The purpose of this paper is to theoretically elucidate properties of a variational Bayesian matrix factorization method. In particular, its mechanism of avoi...

متن کامل

Hierarchical Bayesian Matrix Factorization with Side Information

Bayesian treatment of matrix factorization has been successfully applied to the problem of collaborative prediction, where unknown ratings are determined by the predictive distribution, inferring posterior distributions over user and item factor matrices that are used to approximate the user-item matrix as their product. In practice, however, Bayesian matrix factorization suffers from cold-star...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Sci.

دوره 405  شماره 

صفحات  -

تاریخ انتشار 2017